Objective B-fields and a Hitchin-kobayashi Correspondence

نویسنده

  • SHUGUANG WANG
چکیده

A simple trick invoking objective B-fields is employed to refine the concept of characteristic classes for twisted bundles. Then the objective stability and objective Einstein metrics are introduced and a new Hitchin-Kobayashi correspondence is established between them. As an application the SO(3)-instanton moduli space is proved to be always orientable.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Yang–mills Equation for Stable Higgs Sheaves

We establish a Kobayashi-Hitchin correspondence for the stable Higgs sheaves on a compact Kähler manifold. Using it, we also obtain a Kobayashi-Hitchin correspondence for the stable Higgs G–sheaves, where G is any complex reductive linear algebraic group.

متن کامل

The universal Kobayashi-Hitchin correspondence on Hermitian manifolds

We prove a very general Kobayashi-Hitchin correspondence on arbitrary compact Hermitian manifolds. This correspondence refers to moduli spaces of ”universal holomorphic oriented pairs”. Most of the classical moduli problems in complex geometry (e. g. holomorphic bundles with reductive structure groups, holomorphic pairs, holomorphic Higgs pairs, Witten triples, arbitrary quiver moduli problems)...

متن کامل

Kobayashi-Hitchin correspondence for tame harmonic bundles II

Let X be a smooth projective complex variety with an ample line bundle L, and let D be a simple normal crossing divisor. We establish the Kobayashi-Hitchin correspondence between tame harmonic bundles on X −D and μL-stable parabolic λ-flat bundles with trivial characteristic numbers on (X,D). Especially, we obtain the quasiprojective version of the Corlette-Simpson correspondence between flat b...

متن کامل

Special metrics in Complex Geometry

In the first part of my talk, we consider special metrics on holomorphic bundles. We will recall the classical Hitchin-Kobayashi correspondence (Donaldson-Uhlenbeck-Yau theory) of stability and HermitianEinstein metrics on holomorphic vector bundles; and some generalizations of the classical Hitchin-Kobayashi correspondence, specially, we will focus on non-compact case; furthermore, We’ll discu...

متن کامل

2 Steven

We introduce equations for special metrics, and notions of stability for some new types of augmented holomorphic bundles. These new examples include holomorphic extensions, and in this case we prove a Hitchin-Kobayashi correspondence between a certain deformation of the Hermitian-Einstein equations and our definition of stability for an extension. §

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009